
Here G m is the shear modulus; k m is the limiting shear stress for this part of the curve 
(the flow limit). We will consider the inclusion material (high strength aluminum oxide 
particles with large moduli) as ideally elastic throughout the deformation process: ~f = 
const. Equations (2.4)-(2.6) were solved numerically by computer using the method of suc- 
cessive approximations. 

Figure i displays a comparison of theoretical and experimental load-extension curves 
for an SAP composite (14% A1203). The experimental results, taken from [8], are shown as 
points in Fig. I. The computed values from formulas (2.4)-(2.6) are shown as solid lines. 
The calculated quantities are: E m = 71GPa; Ef = 2500 GPa; v m = 0.34; ~f = 0.2; k m = 25 
MPa; cf = 0.14. 
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STABILITY OF A VISCOELASTIC ROD WITH A SPORADIC LONGITUDINAL LOAD 

A. D. Drozdov and V. B. Kolmanovskii UDC 539.3 

The stability in an infinite time interval is studied for a viscoelastic rod com- 
pressed by a sporadic force. Rod bending is considered in a dynamic arrangement. Stabil- 
ity conditions are formulated in a root-mean-square for a viscoelastic rod with an arbitrary 
form of degree of stress relaxation and different types of end fastening. It is shown that 
with fulfillment of the conditions obtained a viscoelastic rod is stable, but a correspond- 
ing elastic rod with a long-term elasticity modulus is unstable. Questions of stability 
for a rod made of aging viscoelastic material with an arbitrary relaxation nucleus were 
considered in [i, 2]. The problem was studied in a quasistatic arrangement with a deter- 
ministic compressive load. A review of studies of the stability of viscoelastic struc- 
tural elements is contained in [3]. Stability conditions for elastic bodies with a spor- 
adic load are given in [4]. The stability elastic and viscoelastic rods with a sporadic 
longitudinal load is analyzed in [5-7]. Adequate stability conditions for viscoelastic 
rods are obtained in this work by means of the second Lyapunov method for a system with 
an aftereffect. 

i. Model of a Viscoelastic Body. Before application of an external load the body 
is in a natural condition, and at instant of time t = 0 a force is applied to it under whose 
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action it deforms. With a uniaxial stressed state stress o(t) is connected with strain 

e ( t )  by  t h e  r e l a t i o n s h i p  

( t )=E[e ( t )+S  o ' ( t - T )  e(T)dT l, (1.1)  
0 

where E is constant Young's modulus; Q(t) is degree of relaxation; Q'(t) = dQ(t)/dt; Q(0) = 
0. We limit ourselves to studying regular degrees of relaxation for which functions Q(t) 
are twice continuously differentiable. We assume that for any t > 0 the conditions 

-- I < Q(oo) < Q(t) < o; ( 1 . 2 )  

Q'(t) < O, Q'(cr - -  0; (i.3) 

Q"(O > O, Q " ( ~ )  = 0 ( 1 . 4 )  

a r e  f u l f i l l e d  and  t h e r e  e x i s t s  a c o n s t a n t  T o > 0 s u c h  t h a t  f o r  any  t z 0 

Q'" (t) > T$ 2 [Q (t) - Q (oo)1. ( 1 . 5 )  

We explain the mechanical idea of these assumptions. We consider the deformation pro- 
cess for a specimen of the form 

e 1 (l) = 0 (0 <-~ t ~.~ tl); e 1 (t) = e ~ > 0 (t > tl). ( 1 . 6 )  

From (i.I) and (1.6) we find stress of(t) and its derivative with respect to time oi'(t): 

61 (t) = 0, 6; (t) = 0 (0 < t < q); 

~ l ( t ) = E [ t + Q ( t - - t l ) ] e  ~ ~ i ( t ) = E Q ' ( t - - t , ) e  ~ ( t > t l ) .  ( i . 7 )  

According to (1.3) and (1.7) stress in a specimen decreases with time. It follows 
from (1.2) that with t + ~ stress tends towards a positive limiting value independent of 
the instant of loading t i (limiting creep condition [8]). In accordance with (1.4) the 
relaxation rate [oi'(t)l decreases monotonically and it tends towards zero with t § ~. It 
is noted that conditions (1.2)-(1.4) were formulated in [9, i0]. We assume that y(t) = 
Q(t) - Q(~). It follows from (1.2) and (1.3) that y(t) > 0 with t ~ 0 and y(=) = 0. We 
rewrite relationship (1.5) in the form y"(t) > T0-2y(t). We multiply this equality by 
y'(t) < 0 and integrate it from t to infinity. Considering (1.3) we obtain y'(t) < 
-T0-1y(t). By integrating this inequality and returning to the original notation we find 
that 

0 < Q(t) -  Q(co) < - Q ( ~ )  exp (--t/To). 
(i.8) 

According to (1.8) condition (1.5) means that with t ~ ~ the degree of relaxation tends 
towards its limiting value more rapidly with the exponent than with characteristic time 

T o �9 

We introduce dimensionless time ~ = t/T 0 . We assume that Q0(~) = Q(T0~). On the basis 
of (1.5) 

Q~' (~) > Qo (~) - Qo (~)  (~ ~> o)~. 
(1.9) 

In future we require an estimate of the function 
t 

n (0 = - Q; (t) + ~ [Q0 (t - ~) - Q0 (oo)1 d~. 
o 

In view of (1.9) the derivative of function R(t) is negative and R(t) > R(~) for any 
t e 0.  A c c o r d i n g  t o  ( 1 . 3 ) ,  

R (t) ~> lim~ f [Oo (s) -- Qo (oo)] ds (T--+ ~).  
0 

I n t e g r a t i n g  by  p a r t s  and  c o n s i d e r i n g  ( 1 . 8 )  we o b t a i n  
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R ( t ) > ~  S IQ 'o (S ) [ sds  (t>~O). 
o ( i . i0 )  

2. Statement of the Problem of Rod Stability. We consider a rectilinear rod of length 
I: made of viscoelastic material. The rod cross section has two axes of symmetry and the 
center of gravity of the cross section lies on the longitudinal axis. We introduce axis x 
directed along the longitudinal axis of the rod in the undeformed condition. We designate 
in terms of p material density, S the cross-sectional area, I the moment of inertia of the 
cross section in relation to the longitudinal axis. Values of P, S, and I are assumed to 
be constant. At instant of time t = 0 to ends of the rod a compressive force with intensity 
P is applied and the rod bends in the plane of symmetry. Let v1(x) be the initial rod de- 
flection, v2(x) be the initial deflection rate, and u(t, x) be rod deflection at point x e 
[0, i ] at instant of time t -> 0. We assume that rod deflection is quite small so that 
it is possible to ignore the value (u') 2 = (Su/Sx) 2 compared with unity, and the hypothesis 
of plane sections is fulfilled. If material behavior obeys equation of state (i.I), then 
function u satisfies an equation [ii] 

pSu'" (t) = - -  Pu"  (t) - -  E I  u ~v (t) -4- Q" (t - T) u Iv  (~) d~ ( 2 . 1 )  
0 

with initial conditions 

u(O) = vl ,  u '  (0) = v~. 

Here and subsequently in order to reduce the writing we omit argument x. 
one of a group of conditions is fulfilled 

( 2 . 2 )  

At t h e  rod  ends  

u(t, O) = u(t,  l) =- O, u " ( t ,  O) = u " ( t ,  l) ---- O; ( 2 . 3 )  

u(t,  O) = u(t, l) -= O, u'( t ,  O) =- u ' ( t ,  l) = O; (2.4) 

u(t, O) = u(t, l) = O, u'( t ,  O) = O, u " ( t ,  l) = O. ( 2 . 5 )  

R e l a t i o n s h i p s  ( 2 . 3 )  c h a r a c t e r i z e  a h i n g e d  r o d ,  ( 2 . 4 )  a r o d  whose ends  a r e  r i g i d l y  f i x e d ,  
and (2.5) a rod for which one of the ends is rigidly fixed and the other is hinged. 

We assume that P = P0 + Pzw'(t), where P0, Pz are constant values, w(t) is a standard 
Wiener process, and w'(t) is white noise. Equation (2.1) with initial conditions (2.2) 
and one of the boundary conditions (2.3)-(2.5) describes deflection of a viscoelastic rod 
under the action of a compressive sporadic load, and according to [12] it has a unique 
general solution if initial conditions v i pertain to space ~21 the normal to which it is 
possible to determine by the equation [13] 

l 

ll  ll (x)l  ex 
0 

Determination. A rod is called stable in a root-mean-square if for any g > 0 there 
exists 6 > 0 such that from the inequality ilvzll 2 + ilv21i 2 < 6 there follows an estimate 
suPt,xMu2(t, x) < ~ (t e 0, x e [0, l], M is mathematical expectation symbol). The prob- 
lem consists of finding limits for parameters P0 and Pz which guarantee rod stability. 

3. Transformation of Fundamental Equations. We designate in terms of v, the maximum 
value of initial rod deflection. We introduce dimensionless values and parameters: x, = 
x / l ,  "t* = t / T o ,  v z * ( x * )  = v l ( x ) / v * ,  v 2 * ( x * )  = T o v 2 ( x ) / v * ,  u z * ( t * ,  x*)  = u ( t ,  x ) / v * ,  u 2 * ( t *  , 
x,) T0u'(t, x)/v,, w,(t,) = T01/2w(t), a = EIT02/(oS~4), P0* = P0 I,'2/(EI) , PI* = T03]2Pz/ 

(pSi=). According to [14] the random process w,(t,) is a Wiener process. In the new nota- 
tions relationships (2.1)-(2.5) take the form (the asterisk is omitted in order to reduce 
the writing) 

du 2= --a[u Iv(t) 

dul  --- u2(t)dt, 

i ] q- Q; (t - -  x) u l  v (x) d.~ + Po u" (t) dt - -  P t u l  (t) dw (t); 
0 

(3.1) 
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u , ( O )  = v~, u~(O) = v~; (3.2) 

u 1 (t, O) -= u~ (t, 1) = O, Ul (t, O) = u~ (t, 1) = O, 
t i 

u l ( t , O ) = u  a ( t , l ) = O ,  u l ( t , O ) = u  l ( t , t ) = O ,  
t tt  

u~ (t, O) = u~ (t, t)  = O, ul (t, O) = u~ (t, 1) = O. 
(3.3) 

We consider the boundary problem 

Y Iv (x) + ~ r " ( x )  = 0 ( 3 . 4 )  

with one of the boundary conditions (3.3). According to [15] there exists a monotonically 
increasing sequence of positive characteristic values X k and nonzero characteristic func- 
tions ~k(X) which satisfy the conditions (6kl is Kronecker symbol): 

1 I 

% (x) ~l (x) dx  = 5kz, ~ (x) ~l (x)dx = ~h6kZ. ( 3 . 5 )  
0 O 

The s e q u e n c e  { ~ k ( X ) }  i s  c o m p l e t e  i n  s p a c e  W2 2 whose  e l e m e n t s  s a t i s f y  b o u n d a r y  c o n d i t i o n s  
( 3 . 3 ) .  T h e r e f o r e  f u n c t i o n s  u i ( t ,  x ) ,  v i ( x )  may be p r e s e n t e d  i n  t h e  f o r m  o f  a s e r i e s  

~ = E ~ (t) ~ (x), ~ = E ~ (x) (3.6) 
h = l  h = l  

We s u b s t i t u t e  e x p r e s s i o n s  ( 3 . 6 )  i n  ( 3 . 1 )  and  ( 3 . 2 ) .  We m u l t i p l y  e a c h  o f  t h e  e q u a l i t i e s  
by ~n"(X) and we integrate with respect to x from 0 to i. Integrating by parts and con- 
sidering (3.3)-(3.5) we obtain 

dzl, ~ = z2,,(t)dt , 

e z ~  = - ~X (~ - p j ~ : l )  ~ (t) + ~ O;  (t - ~) ~ (~) d~ 
0 

z~(O) = ~ ,  z2,~(O ) = ~2~ (n = 1, 2 . . . .  ). 

dt + 

(3.7) 

From (3.3), (3.5), 
[0, i] 

(3.6) and the Cauchy inequality it follows that for any t e 0, x 

t t 2 2 u~(t, x) = u1(t, ~) d~ < [u~(t, ~)] d~ = ~(t), 
0 k=l (3.8) 

~ih. 
h = l  

4. Conditions for Rod Stability. It was shown in [i] that with a deterministic load 
and a quasistatic deformation process for stability of a viscoelastic rod fulfillment of 
the following inequality is necessary and sufficient 

Po < ~111 + Qo(oo)]. (4.1) 

THEOREM. We assume that condition (4.1) is fulfilled and 

P~<a {1 + [a%~ (t + Qo(~)--po%rl)]- l }- i  S IQ3(s)]sds. (4.2) 
0 

Then a viscoelastic rod is stable in a root-mean-square under the action of a sporadic com- 
pressive load. 

The maximum period of natural bending vibrations of an elastic rod with Young's modulus 
E 0 = E[I + Q0(~)] is determined by the equation T l = 2~[pSL~/(E01X12)]I/2. We write in 
terms of Pe = E01XI/-2 Euler critical force for an elastic rod. In the original notation 
conditions for stability of a viscoelastic rod (4.1) and (4.2) take the form 
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Po/P e < i, 
(Po/P~) 2 < N(I --  Po/P~)[l § 4n~(To/T02(t ~ po/P~)l-i  

N =  [t + Q(oo)]- IS[  Q" (s)[sds,  
( 4 . 3 )  

0 

As an example we cons ide r  a s tandard  v i s c o e l a s t i c  m a t e r i a l  whose behav io r  i s  descr ibed  
by the equa t ion  o" + T0-~o = Ee" + EoTo~e.  Here E and E 0 are  ins tan taneous  and l ong - te rm  
elasticity moduli, T O is characteristic relaxation time. With P0 = 0 the condition for 
rod stability takes the form 

]Pal < Pe[(E/Eo --  t)ToP/2[t + 4n~(To/T~)2]-L 

Preliminary Estimates. According to (4.1) there exists ~ > 0 such that for any . 

n-> 1 

an = I + Qo (co) -7 Po)~l  ~ > 1 + Qo ( c r  Po~71 ~> =. ( 5 . 1 )  

F u n c t i o n s  O(x) = a x 2 [ 1  + Qo(~) - Po x-1 ] i n c r e a s e  m o n o t o n i c a l l y  w i t h  x _> Po[2 (1  + 
Q0(~))] -l. Thus it also follows from (4.i) that with any n > i 

%~ > %  (r = ~(~',~)). (5 .2)  

On the basis of (4.2) there exists ~ > 0 such that 
oo 

[ Qo (s) ] s ds --  P~a -~ (1 + ~p~-~) >~ ~. ( 5 . 3 )  
0 

I t  f o l l o w s  f rom ( 1 . 1 0 ) ,  ( 5 . 2 ) ,  and ( 5 . 3 )  t h a t  

R(t) --  P ~ a - l ( t  -6 ~71) ~>[3. (5.4) 

6. Proof of the Theorem. We calculate the differential of functional 

+ a~ [(t + Qo (t) --  P o ~  1) z~,n(t) - -  W i n ( t )  g 22n ( t) 

] --  ~ Oo (t - -  "~) (Zln (t) - -  Zln (T))  2 d $  . (6.1) 
0 

From t h e  ]:to e q u a t i o n  and ( 3 . 7 )  we o b t a i n  

d W ~ = - - a ~ [ i  Q'o" (t--~)(z~n(t)--zan(~)) ~ d T ~  

--  (Q'o (t) + P~a -a) z~n (tl] dt + 2P~Xnzv, (t) z.2n (t) dw (t). (6.2) 

We find the differential of the functional 

t 

W2n (t) = g2n (t) + a ~  ~ [Qo (t  - T) - Qo ( ~ 1 7 6  g ln  (T) d~. 
0 

Following from (3.7) we have 

dW2~ = -- a~$~zln (t) dt + P1~nzln (t) dzv (t). 

From relationships (3.7), (6.2)-(6.4) 
tional 

( 6 . 3 )  

(6.4) 

it follows that the differential of the func- 

equals 

W3~ (t) = W ~  (t) + ~p~ [z~n (t) -4- W]~ (t)] ( 6 . 5 )  
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dW3,, = - -  a~,~% [- -  (Q'o (t) + P~a -~ ( t  + ~ : ~ ) ) z ~  (t) i- 
t ,, t 

.6 S Q'o" (t - -  ~c) (z~n (t) - -  zan ('r d'~ .6 2z~. (t) (0o (t T)  

0 0 

- -  Qo (co)) zan ('Q d'~] dt -6 2P~%nz~ (t) [W~n (t) -6 ~p~Zen (t)] dw (t). 

We t r a n s f o r m  e x p r e s s i o n s  i n  t h e  r i g h t - h a n d  p a r t  o f  ( 6 . 6 ) :  

( 6 . 6 )  

t 

2zr~ (t) I (Q0 (t - -  ~) - Q0 (co)) z~  (~) dT = - -  S (Q0 (t - T) - 
0 0 

- -  Qo (oo)) (zi~ (t) - zl,, (T)) 2 dl: + z ~  (t) f (Oo (t - -Q - Oo (co)) d'r + 
0 

t 

+ S (Oo (t - -  T) --  Qo (co)) z~= (z) d~. 
0 

( 6 . 7 )  

It follows from relationships (6.6) and (6.7) that 

dW~n = - -  ~ , ~  Q ;  (t - ~) - (Qo (t - ~) - 

- -  Qo (co))(Zln (t) - -  Z~ ('Q)~ d'~ + ( R  (t) - -  t'~a -~ ( f  + V $ ~ ) )  z ~  (t) + 

+ J" (Qo (t - ~c) - Qo (co)) z~  ('Q d'c dt + 2P~X~z~ (t) (W2n (t) +*~z2~ (t)) dw (t). 
0 

( 6 . 8 )  

We integrate relationship (6.8) from 0 to t and we work out the mathematical expecta- 
tion for both parts of the equality obtained. Considering (1.9), (5.1), and (5.4) and con- 
ditions (1.2)-(1.4) we find that MW3n(t) ~ MW3n(O). By substituting in this relationship 
expressions (6.1), (6.3), and (6.5) and amplifying the inequality we have 

I~ (t) = M z ~  (t) + a ~  (Qo (t - ~) - Qo (co)) z ~  (T) d~ + 
o 

o 

( 6 . 9 )  

From relationships (5.1), (5.2), and (6.9) and conditions (1.2)-(1.4) it follows that 
I n ~ a Xnf(l + ~aXnf)Mzinf(t). From this relationship and (6.9) it follows that there 
exists a constant c 3 > 0 independent of n such that with t ~ 0 

2 MzL (t) <c3 ( ~  + ~ )  (6.10) 
We sum e q u a l i t y  ( 6 . 1 0 )  w i t h  r e s p e c t  t o  n.  C o n s i d e r i n g  ( 3 . 8 )  we o b t a i n  

Mu~ (t, x) ~ c3 ([[ v 11[ 2 + 1l v2 li 2) (t ~ 0, x ~ [0, 1]). ( 6 . 1 1  ) 

P r o o f  o f  t h e  t h e o r e m  f o l l o w s  f rom i n e q u a l i t y  ( 6 . 1 1 ) .  

7. Instability of an Elastic Rod with a Sporadic Compressive Load. We consider bend- 
ing of an elastic rod compressed over the ends by a force P, P0 < Pe- We take the dimen- 
sional initial perturbation in the form v i = O, v 2 = 6Ti(x) (6 = const). Here dimension- 
less values ui(t, x) are determined by the equations 

u~ = 6 z ~ ( t ) % ( x ) ,  u~ = 6 z ~ ( t ) ~ ( ~ ,  ( 7 . 1 )  

Coefficients zl(t) and zf(t ) satisfy the set of equations 
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dz 1 = z 2 dt, dz~ = - -  a)~ ( t  - -  Po)~  1) zl dt + P1)hzl d~v (t), 

z~(O) = O, z2(O ) = I. (7.2) 

It follows from (7.2) and the Ito equation that functions X l = Mz12(t), X 2 = Mzz(t) x 
z2(t), X 3 = Mz22(t) are solutions of the set of equations ($i = a 112( 1 -- P01z-1), 01 = 

Pl2~l 2) 
X~ = 2X2, X~ = - -  ~hX, + X~, X~ = 01XI - -  2~hX 2, 

X,(0 )  = 0, X2(0 ) = 0, Xa(0) ---- 1. ( 7 . 3 )  

We write a characteristic equation for system (7.3): 

/(k) = O, /(x) = x ~ 4- 4xpzx -- 201 . (7.4) 

Function f(x) increases monotonically, f(0) = -281, f(~) = ~. This means that with 
PI # 0 for Eq. (7.4) the sole real positive root k I = <. Two other roots are determined 
by the equations k2, 3 = (-< + i~)/2, m 2 = 3< 2 + 16~i > 0. We write the solution of set of 
Eqs. (7.3) in the form 

X 1 --- - - [ •  cos (ot/2 - -  B sin o)t/2) 4- o)(A sin ~ot/2 4- 

4- B cos (ot/2) ] exp (--•  4- 2C• exp (• 

X2 = (1/4)[(• - -  ~o2)(A cos o)t/2 - -  B sin 0)#2) -~- 2• sin o)t/2 4- 

4- B cos (ot/2)] exp (--•  -~- C• 2 exp (• 

Xa = [(201 4- qh• A cos (ot/2 - -  B sill o)t/2) 4- ~l  o) (A sin o)t/2 t- ( 7 . 5 )  

4- B cos cot/2)] exp (--•  q- 2(01 - -  ~h• exp (• 

Constants A, B, C have the form A = 4K2181(9< 2 + ~2)]-i, B = <(m2 _ 3<2)[elw(9K2 + 
m2)]-l, C = (<2 + m2)[201(9<2 + m2)]-I 

It follows from relationships (7.1) and (7.5) that for any 6 > 0 the value Mu12(t, x) 
tends towards infinity with t § ~. Consequently, an elastic rod in a root-mean-square is 
unstable with a sporadic component of load of the white noise type of arbitrary intensity. 

According to (4.1) with a deterministic longitudinal load material toughness leads 
to a reduction in critical force. As the example provided indicates, with a sporadic longi- 
tudinal load the presence of toughness plays a positive role: with fulfillment of inequality 
(4.3) a viscoelastic rod is stable, but an elastic rod is unstable. 
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SHELL THEORY BASED ON INVARIANTS 

V. V. Kuznetsov UDC 539.3 

The precise theory is considered for finite strains of a three-dimensional body sub- 
ordinate to the hypothesis of holding a normal element against a reference (central) sur- 
face. The first and second invariants of the strain tensor for a Green surface parallel 
to the reference surface are used as a measure of physical strains. It is shown that from 
the invariants of physical strains it is possible to determine any invariant characteristic 
of an elastic body: energy, stress tensor invariants, stress intensity, etc. A general 
definition is given for strain invariants of an arbitrary surface as components of the rela- 
tive change in the square of a surface element. There is simplification of invariants with 
small strains and any distortions of thin shells. Expressions are obtained for the change 
in coefficients of the first and second quadratic forms of the central surface for small 
strains, and arbitrary and small displacements�9 

i. Geometry of a Three-Dimensional Body. We assume that IR is radius vector of a 
three-dimensional body in the undeformed condition which is expressed in terms of reference 
surface radius vector r and the unit vector of the normal to the surface in the form R ~- 
r q-zn. In the general case r will be assumed to be independent of arbitrary curvilinear 
coordinates ~i" Coefficients of the first invariant form of the reference surface a~j---- 
r, ir,j, and for the surface z = const Aij = R,~R~. Here and subsequently i, j = I, 2: in- 
dices after a comma signify differentiation wi'th respect to ~i" The vector of the normal 
to surface z = const coincides with the vector of the normal to the base: n=(r,1~r.2)d~/2. 
For further convenience we adopt the following definition of the value d6y which depends 
on the coefficients of any two quadratic forms 6ij, Xij(d6y # dye): 

det ~1~ ~2 = f~11722-- B1~?21" 
d~v= Y2~ ?22 

Then d~a = ar ia22 - -a~ . ,  i s  d i s c r i m i n a n t  o f  q u a d r a t i c  form a i j d a i d a  j .  The s q u a r e  o f  an e l emen t  
of area dF 2 of surface z = const has the form dF 2 = dAAd~z2daa 2. We assume that deforma- 

tion of a three-dimensional body follows the hypothesis of holding a normal element against 
a reference surface [i] In the deformed condition RV = rV q-zn v, a~ V=r4rd ' = , , = 

(rVxrV~ dV-1/2 d f V ~  V ~- 2 V , ,2/ aa , = d A A d a l d a  2. Here f o r  dB$ , where $ i j  = ~ i j  v, we adop t  t h e  symbol dyu 

2. D e t e r m i n a t i o n  of  P h y s i c a l  S t r a i n  I n v a r i a n t s .  We c o n s i d e r  s u r f a c e  z = c o n s t  in  

t h e  deformed  c o n d i t i o n .  Assuming AijV = Ai j  + 2Ei j  and f o r m u l a t i n g  t h e  r a t i o  dFV2/dF 2, 
we o b t a i n  

d F V i / d F  2 = I q -  2 I  E + 4 I ~ E ;  

I E = (dAF ~ q- dEA) /dAA;  

(2.1) 

(2.2) 
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